Novel function of tenascin-C, a matrix protein relevant to atherosclerosis, in platelet recruitment and activation under flow.
نویسندگان
چکیده
OBJECTIVE The identification of platelet-reactive proteins exclusively present in atherosclerotic plaques could provide interesting targets for effective and safe antithrombotic strategies. In this context, we explored platelet adhesion and activation to tenascin-C (TN-C), a matrix protein preferentially found within atheroma. METHODS AND RESULTS We show that platelets efficiently adhere to TN-C under both static and flow conditions. Videomicroscopy revealed a unique behavior under flow, with platelets exhibiting stationary adhesion to TN-C; in contrast, platelets rolled over von Willebrand factor and detached from fibrinogen. Platelet interaction with TN-C was predominantly supported by integrin α(2)β(1) under static conditions, whereas under high shear, it was dependent on both the α(2)β(1) integrin and the glycoprotein Ib-IX complex. Integrin α(IIb)β(3) appeared to play a secondary role but only at low shear rates. The glycoprotein Ib-IX-dependent interaction was indirect, relying on von Willebrand factor, and increased as a function of wall shear rate. Von Willebrand factor bound directly to TN-C, as shown by ELISA and coimmunoprecipitation, suggesting that it acts as a bridge between TN-C and platelets. The adhesion of platelets to TN-C triggered their activation, as demonstrated by a shape change and increases in intracellular calcium level. CONCLUSIONS This study provides evidence that TN-C serves as a novel adhesive matrix for platelets in a context that is relevant to atherothrombosis.
منابع مشابه
Inhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملTenascin-C Suppresses Rho Activation
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in su...
متن کاملتاثیر فیلتراسیون پیش از ذخیره کردن بر فعال شدن پلاکتها در فراوردههای پلاکتی
Preparation conditions and platelet storage for transfusion may cause platelet activation, which contributes to decreased ability of stored platelet to function and survive in vivo after transfusion compared with that seen with freshly prepared platelets. Using flowcytometry, we investigated platelet membrane expression of CD62P, CD63 in platelet stored for up to 3 days under standard blood ba...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2011